Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes
نویسندگان
چکیده
One of the key goals in atomic force microscopy (AFM) imaging is to enhance material property contrast with high resolution. Bimodal AFM, where two eigenmodes are simultaneously excited, confers significant advantages over conventional single-frequency tapping mode AFM due to its ability to provide contrast between regions with different material properties under gentle imaging conditions. Bimodal AFM traditionally uses the first two eigenmodes of the AFM cantilever. In this work, the authors explore the use of higher eigenmodes in bimodal AFM (e.g., exciting the first and fourth eigenmodes). It is found that such operation leads to interesting contrast reversals compared to traditional bimodal AFM. A series of experiments and numerical simulations shows that the primary cause of the contrast reversals is not the choice of eigenmode itself (e.g., second versus fourth), but rather the relative kinetic energy between the higher eigenmode and the first eigenmode. This leads to the identification of three distinct imaging regimes in bimodal AFM. This result, which is applicable even to traditional bimodal AFM, should allow researchers to choose cantilever and operating parameters in a more rational manner in order to optimize resolution and contrast during nanoscale imaging of materials.
منابع مشابه
AFM based dielectric spectroscopy: extended frequency range through excitation of cantilever higher eigenmodes.
In the last years, a new AFM based dielectric spectroscopy approach has been developed for measuring the dielectric relaxation of materials at the nanoscale, the so called nanoDielectric Spectroscopy (nDS). In spite of the effort done so far, some experimental aspects of this technique remain still unclear. In particular, one of these aspects is the possibility of extending the experimental fre...
متن کاملVibrational shape tracking of atomic force microscopy cantilevers for improved sensitivity and accuracy of nanomechanical measurements.
Contact resonance atomic force microscopy (CR-AFM) methods currently utilize the eigenvalues, or resonant frequencies, of an AFM cantilever in contact with a surface to quantify local mechanical properties. However, the cantilever eigenmodes, or vibrational shapes, also depend strongly on tip-sample contact stiffness. In this paper, we evaluate the potential of eigenmode measurements for improv...
متن کاملTrade-offs in sensitivity and sampling depth in bimodal atomic force microscopy and comparison to the trimodal case
This paper presents experiments on Nafion(®) proton exchange membranes and numerical simulations illustrating the trade-offs between the optimization of compositional contrast and the modulation of tip indentation depth in bimodal atomic force microscopy (AFM). We focus on the original bimodal AFM method, which uses amplitude modulation to acquire the topography through the first cantilever eig...
متن کاملRepulsive bimodal atomic force microscopy on polymers
Bimodal atomic force microscopy can provide high-resolution images of polymers. In the bimodal operation mode, two eigenmodes of the cantilever are driven simultaneously. When examining polymers, an effective mechanical contact is often required between the tip and the sample to obtain compositional contrast, so particular emphasis was placed on the repulsive regime of dynamic force microscopy....
متن کاملDynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments
We present a simulation environment, dForce, which can be used for a better understanding of dynamic force microscopy experiments. The simulator presents the cantilever-tip dynamics for two dynamic AFM methods, tapping mode AFM and bimodal AFM. It can be applied for a wide variety of experimental situations in air or liquid. The code provides all the variables and parameters relevant in those m...
متن کامل